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The dynamics of the evolution of turbulence statistics depend on the structure of
the turbulence. For example, wavenumber anisotropy in homogeneous turbulence is
known to affect both the interaction between large and small scales (Kida & Hunt
1989), and the non-local effects of the pressure–strain-rate correlation in the one-point
Reynolds stress equations (Reynolds 1989; Cambon et al. 1992). Good quantitative
measures of turbulence structure are easy to construct using two-point or spectral
data, but one-point measures are needed for the Reynolds-averaged modelling of
engineering flows. Here we introduce a systematic framework for exploring the role of
turbulence structure in the evolution of one-point turbulence statistics. Five one-point
statistical measures of the energy-containing turbulence structure are introduced and
used with direct numerical simulations to analyse the role of turbulence structure
in several cases of homogeneous and inhomogeneous turbulence undergoing diverse
modes of mean deformation. The one-point structure tensors are found to be useful
descriptors of turbulence structure, and lead to a deeper understanding of some rather
surprising observations from DNS and experiments.

1. Introduction
1.1. Overview

The goal of the one-point Reynolds-averaged theory of turbulence, initiated by
Osborne Reynolds’ 1895 classic paper, is the prediction of the turbulence stresses
needed in the mean flow equations. Today engineering analyses of systems involving
turbulent flows rely primarily on one-point Reynolds-averaged turbulence models.
In simple flows, where the deformation rates are mild and the turbulence has time
to reach an equilibrium with the mean flow, eddy-viscosity models have been used
with success. In such flows the Reynolds stresses are determined by the applied strain
rate and it is reasonable to relate them to the mean strain rate Sij through the
eddy-viscosity assumption,

Rij =
2k

3
δij − 2ντSij , ντ = Cµk

2/ε. (1.1)

In the modern family of k–ε models, the eddy viscosity ντ is modelled in terms of
the turbulent kinetic energy k (hereafter q2 = 2k will be used) and dissipation rate
ε, for which partial differential equations (PDE) are used. Such models have proven
to be very useful in predicting near-equilibrium or decaying turbulent flows, where
the deformation rate S =

√
SijSji is small relative to (or even comparable to) the

reciprocal time scale ε/q2 of the turbulence.
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The response of turbulence to rapid mean deformation (Sq2/ε � 1), at least
initially, is described by rapid distortion theory (RDT). Under RDT the nonlinear
effects resulting from turbulence–turbulence interactions are neglected in the governing
equations, but even when linearized in this fashion, the one-point governing equations
are, in general, not closed due to the non-locality of the pressure fluctuations. In flows
with rapid mean deformations, the structure takes some time to respond and eddy-
viscosity models, which predict immediate response, are inadequate. Reynolds stress
transport (RST) equations have been added to the PDE system used in turbulence
models in an attempt to deal with this weakness. While RST models have enjoyed
some success, they are not yet widely used in industry because they have not proven
reliably better than simpler models.

The reason behind this failure has to do with the proper characterization of
the anisotropy of the turbulence in a one-point theory. RST and other one-point
approaches use the anisotropy of the turbulent stresses to characterize the anisotropy
of the field. However, the departure of Rij from the isotropic form q2δij/3 is only
one aspect of the anisotropy of the turbulence. Here we hope to emphasize that
the turbulence can exhibit anisotropy that is dynamically significant (even for the
transport of the one-point turbulent stresses) and which is not captured in the
Reynolds stresses. Other one-point statistical measures of anisotropy, in addition to
the anisotropy of the turbulent stress, are then needed.

The Reynolds stresses carry information about the componentality of the turbulence
(the relative strengths of different velocity components). Roughly speaking, each large-
scale structure tends to organize spatially the fluctuating motion in its vicinity, and
in so doing, to eliminate gradients of the fluctuation fields in certain directions (those
in which the spatial extend of the structure is significant), and to enhance gradients
in other directions (those in which the spatial extend of the structure is small).
Thus associated with each eddy are local axes of dependence and independence. In
undeformed isotropic turbulence the various axes of dependence and independence
(due to individual eddies) are oriented randomly and this means that the fluctuation
field due to the ensemble of all the eddies has gradients in all three directions.
Mean deformation acting on the turbulence creates structural anisotropy because it
stretches and aligns the energy-containing turbulent eddies. This in turn aligns the axes
of dependence and independence due to individual eddies and creates directions in
which, even in a statistical sense, gradients of energy-containing fluctuations are weak.
Thus by acting on the energy-containing structure mean deformation can create axes
of independence that are reflected in autocorrelations of gradients of the fluctuation
fields. In regions in the flow where there is one such direction of independence, the
turbulence becomes two-dimensional. Note that this says nothing about the intensity
of the fluctuations in that direction. Thus the anisotropy of the dimensionality of the
turbulence is in general distinct from the anisotropy of its componentality.

Adequate characterization of the state of the turbulence also requires informa-
tion about the dimensionality of the turbulence (the relative uniformity of structure
in different directions), and even of additional turbulence features in some cases.
Turbulence models carrying only componentality information (e.g. standard RST
models) cannot possibly satisfy conditions associated with the dimensionality of the
turbulence or reflect differences in dynamic behaviour associated with structures
of different dimensionality (nearly isotropic turbulence vs. turbulence with strongly
organized two-dimensional structures).

This fundamental realization led us to introduce three second-rank and one third-
rank one-point turbulence tensors that carry the information missing from the
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Reynolds stresses. These new tensors, along with Reynolds stresses, provide a minimal
tensorial base for a complete one-point theory of turbulence. Not all of these tensors
are important under all conditions, which explains why traditional RST models (and
even simpler approaches) have enjoyed considerable success in some cases.

Here we introduce these new tensors, demonstrate their effectiveness as descriptors
of the turbulence structure, and characterize the information they carry so that turbu-
lence modellers can devise schemes for incorporating at least some of that information
into their models. In § 2 we consider anisotropic homogeneous turbulence undergoing
rapid mean rotation to demonstrate the need for structure information in one-point
formulations. The fundamental definitions and properties of the structure tensors are
introduced and discussed in §§ 3 and 4. In §§ 5–9, we use a database from direct numer-
ical simulations (DNS) to study the structure tensors for several cases of homogeneous
and inhomogeneous turbulence undergoing diverse forms of mean deformation. The
examples considered demonstrate the usefulness of the structure tensors in providing
an accurate description of the turbulence. In certain cases, counterintuitive results
can only be explained in terms of the combined componentality–dimensionality de-
scription, which again underscores the importance of these new tensors beyond the
immediate scope of turbulence modelling. Finally, § 10 summarizes the results.

2. Insights from rapid distortion analysis of homogeneous turbulence
2.1. Componentality vs. dimensionality

The difference between componentality and dimensionality information is nicely
exhibited by the inviscid RDT of homogeneous turbulence, for which the evolution
equations for the Reynolds stresses, Rij = u′iu′j , are (see for example Kida & Hunt
1989; Reynolds & Kassinos 1995)

dRij
dt

= −GikRkj − GjkRki + T
rapid
ij , (2.1)

where Gij = Ui,j is the mean velocity gradient tensor and T rapid
ij is the rapid pressure–

strain-rate term, which results from the familiar splitting of the pressure fluctuations
into ‘slow’ and ‘rapid’ parts (see Appendix A)

T
rapid
ij = 2Gkn(Minkj +Mjnki). (2.2)

Here M is

Mijpq ≡
∫
kpkq

k2
Eij(k) d3k, (2.3)

where Eij(k) ∼ ûi(k)û∗j (k) is the velocity spectrum tensor, k is the wavenumber vector,
hats denote Fourier coefficients and the ∗ denotes a complex conjugate.† M is a
fourth-rank tensor that must be modelled in terms of the tensor variables in the
one-point model (Reynolds & Kassinos 1998). The two non-zero contractions of M
are

Rij = Mijpp =

∫
Eij(k) d3k and Dpq = Miipq =

∫
kpkq

k2
Eii(k) d3k. (2.4)

† In homogeneous fields, discrete Fourier expansions can be used to represent individual re-
alizations in a box of length L; then the discrete cospectrum of two fields f and g is given

by X̃ij(k) = (L/2π)3f̂i(k)ĝ∗j (k), where the bar represents an ensemble average over the box. The

cospectrum of two fields Xij(k) is the limit of the discrete cospectrum X̃ij as L → ∞. Here we use

Xij(k) ∼ f̂i(k)ĝ∗j (k) as a shorthand notation, but the exact definition should be kept in mind.
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As noted above, R ≡ Rij contains the componentality information in M . D describes
the distribution of energy over directions in wavenumber space, i.e. the dimensionality
information inM . A more general definition of D will be given shortly. The importance
of dimensionality information in wavenumber space has been discussed by several
authors, including Townsend (1976) and Kida & Hunt (1989).† In standard RST
closures (see Launder, Reece & Rodi 1975, hereafter denoted by LRR) M is modelled
as a linear function of a single tensorial argument, r̃ , where r̃ij = rij−δij/3, rij = Rij/q

2

and q2 = Rkk . To O(r̃), the definitions and continuity condition (Mijjq = 0) determine
the model, except for one free coefficient, which has been determined by fitting
experiments. If instead M is allowed to depend on both r̃ and d̃ , where d̃ij = dij−δij/3,

dij = Dij/q
2 and q2 = Dkk = Rkk , then all of the model coefficients to O(r̃ , d̃) are

determined by the definitions and continuity (see Appendix C). Moreover, if we then
set d̃ = 0, the resulting model in terms of r̃ , including the numerical coefficient, is
almost exactly the same as determined by LRR’s fit to experiments, for reasons that
become clear later in this paper. But when d̃ 6= 0, both d̃ and r̃ influence the evolution
of R; both dimensionality and componentality are important to the evolution of the
energy-containing eddies (see also Reynolds 1989; Cambon, Jacquin & Lubrano 1992;
Reynolds & Kassinos 1995).

2.2. Stropholysis

Additional insight into the important structural information involving the energy-
containing eddies is provided by analysis of axisymmetric turbulence. Using the
methods of Robertson (1940), Kassinos & Reynolds (1994, hereafter denoted by
KR94), have shown that the general form of the spectrum for turbulence axisymmetric
about the x1-axis is given by

Eij(k) =
E

4πk2

(
δij − kikj

k2

)

+A

[
1

2

(
k2

1

k2
− 1

)
δij +

1

2

(
k2

1

k2
+ 1

)
kikj

k2
− k1(kiδj1 + kjδi1)

k2
+ δi1δj1

]

+R
εin1kn(k

2δj1 − k1kj) + εjn1kn(k
2δi1 − k1ki)

2k3
+ i

H

2πk2
εijn

kn

k2
. (2.5)

Here E(k, k1, t) is the energy spectrum function, A(k, k1, t) is the anisotropy spectrum
function, R(k, k1, t) is the rotational spectrum function, and H(k, k1, t) is the helicity
spectrum function. The spectrum in (2.5) differs from the formula derived by Batchelor
(1946) and Chandrasekhar (1950) in the addition of the R term, which arises from
the breaking of reflectional symmetry, and it is essential for turbulence subjected to
mean rotation. This is nicely demonstrated by the inviscid RDT equations for the
evolution of the spectrum functions (KR94), which are

dE

dt
= 0,

dA

dt
= 4Ω

k1

k
R,

dR

dt
= −4Ω

k1

k
A,

dH

dt
= 0, (2.6)

where Ω ≡ Ω23 = (G23 −G32)/2 is the mean rotation rate about the axis of symmetry
x1. These show that the spectrum function R is generated by A, and will appear
even if absent initially if there is any anisotropy in the initial turbulence. The sole
contributor to the energy is E. One-point statistics are obtained by integrating over
the wavenumber space as shown in (2.3) and (2.4). Only E and A contribute to

† For example, Dij as defined here corresponds to Cij in the notation of Kida & Hunt (1989).



One-point turbulence structure tensors 217

second-rank tensors R and D . The fourth-rank tensor M receives contributions from
E, A, and R, and therefore if R is non-zero M contains additional information not
carried by R and D . We call this information stropholysis† information and have
shown that it is associated with a fully symmetric third-rank stropholysis tensor Q∗ijk .
Stropholysis plays a key role in the dynamics of all turbulence subjected to mean or
frame rotation.

2.3. Summary

The analysis above suggests that three kinds of information are important in the
evolution of the turbulent stresses in homogeneous turbulence; (i) componental-
ity information in the turbulent stresses themselves; (ii) dimensionality information
available through D; and (iii) information about the breaking of reflectional symme-
try by mean or frame rotation carried by the stropholysis tensor Q∗. With this brief
motivation based on homogeneous turbulence, we next turn to general definitions of
one-point tensors that contain this and other essential information.‡

3. Definitions
3.1. The turbulence stream function

We introduce the turbulence stream function vector Ψ ′i , defined by

u′i = εitsΨ
′
s,t, Ψ ′i,i = 0, Ψ ′i,nn = −ω′i , (3.1)

where ω′i denotes the turbulence vorticity vector. We require Ψ ′i to be divergence-free
so that the last equality of (3.1) is valid. This choice is important for the physical
meaning of the resulting structure tensors (see § 3.7). Note that Ψ ′i satisfies a Poisson
equation and hence, like the fluctuating pressure, carries non-local information. Using
the definition (3.1), the Reynolds stress tensor Rij , its associated normalized tensor
rij , and its anisotropy tensor r̃ij are

Rij = u′iu′j = εipqεjtsΨ ′q,pΨ ′s,t, rij = Rij/Rkk = Rij/q
2, r̃ij = rij − δij/3. (3.2)

This shows that one-point correlations of stream function gradients, like the Reynolds
stresses, are dominated by the energy-containing scales. Next, we define several
correlations of stream function gradients and then show that they carry useful
information.

3.2. Dimensionality

The structure dimensionality tensor Dij , its associated normalized tensor dij and

dimensionality anisotropy tensor d̃ij are defined by (see Reynolds 1989, 1991)

Dij = Ψ ′n,iΨ ′n,j , dij = Dij/Dkk, d̃ij = dij − δij/3. (3.3)

The Dij tensor reveals the level of two-dimensionality of the turbulence. For example,
when the turbulence is independent of x1 then d11 = 0 because none of the stream-
function components varies in that direction. When the turbulence is nearly, but not

† The name stropholysis means ‘breaking by rotation’ (in Greek στρoφή means turn or rotation,
and λύσις means breaking or untying).
‡ The reader will find interesting the comparison of the one-point formalism developed here

with the spectral formalism of Cambon & Jacquin (1989) and Cambon, Jacquin & Lubrano (1992)
based on earlier work by Craya (1958) and Herring (1974). Even though they differ in scope, the
two formalisms have points of contact. For example, Reij in Cambon et al. (1992) is related to the

dimensionality tensor by Reij = − 1
2
q2d̃ij .
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completely, independent of x1 then d11 ≈ 0 because there is little stream function
variation in that direction. We will see that this is the signature of wall layer streaks
in turbulent boundary layers.

3.3. Circulicity

The structure circulicity tensor Fij , and its associated normalized tensor fij and

circulicity anisotropy tensor f̃ij are defined by

Fij = Ψ ′i,nΨ ′j,n, fij = Fij/Fkk, f̃ij = fij − δij/3. (3.4)

The Fij tensor describes the large-scale structure of the vorticity field which is most
clearly seen in the case of homogeneous turbulence. In this case, the last equality in
(3.1) ensures that Ψ ′α = 0 whenever ω′α = 0; when there is no large-scale circulation
about the x1-axis the turbulence stream function component Ψ ′1 = 0, and hence
F11 = 0. On the other hand, when most of the large-scale circulation is concentrated
about the x1-axis, f11 → 1. Note that Fkk = Dkk .

3.4. Inhomogeneity

The inhomogeneity tensor Cij , its associated normalized tensor cij and inhomogeneity
anisotropy tensor c̃ij are defined by

Cij = Ψ ′i,nΨ ′n,j , cij = Cij/Dkk, c̃ij = cij − ckkδij/3. (3.5)

Note that the normalized tensor cij is defined in terms of the trace Dkk = Fkk , not
in terms of Ckk . This choice is motivated by the following considerations. First, the
diagonal components of C , unlike those of R , D and F , can be either negative or
positive. This lack of positive semi-definiteness in C means Ckk can vanish in regions
of a turbulent flow, thus producing an ill-defined cij if it were used to normalize C .
In addition, normalizing with Dkk = Fkk results in a tensor that provides a measure
of the importance of inhomogeneity relative to the other one-point tensors. Another
possibility would be to normalize with Rkk , but this choice proves problematic in wall
bounded flows where Rkk vanishes at the wall.

One finds that Cij vanishes for homogeneous turbulence by using (3.1) to write the
basic definition (3.5) in the form

Cij = (Ψ ′i Ψ ′k,j),k . (3.6)

3.5. Invariant anisotropy measures

The anisotropy tensors r̃ , d̃ , and f̃ are trace-free, and accordingly each has only two
independent anisotropy-invariants. These can be formed using the general definitions

Ix ≡ x̃ii = 0, IIx ≡ − 1
2
x̃ij x̃ji, IIIx ≡ 1

3
x̃ij x̃jkx̃ki, (3.7)

valid for any traceless second-rank tensor x̃ij . One can use the independent anisotropy-
invariant coordinates (IIIx,−IIx) to map all possible states represented by these
tensors (Lumley & Newman 1977). For traceless positive semi-definite tensors (like r ,
d and f ) all possible states fall inside the boundaries of a triangular region, that we
call the Lumley triangle. The lack of positive semi-definiteness in c means that the
map of all possible states represented by c does not lie entirely within the Lumley
triangle (see § 4.2).

3.6. Stropholysis

From the simple example of rapidly rotated homogeneous axisymmetric turbulence
in § 2.2 we know that the stropholysis tensor Q∗ carries information independent of
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R , D , F , and C . The general definition of the third-rank fully symmetric structure
stropholysis tensor is given by

Q∗ijk = 1
6
(Qijk + Qjki + Qkij + Qikj + Qjik + Qkji), (3.8)

where

Qijk = −u′jΨ ′i,k. (3.9)

The bi-traces of Qijk are

Qkjk = 0, Qkki = Qikk = −(u′kΨ ′i ), k . (3.10)

The first of these traces vanishes due to the divergence-free nature of the fluctuating
stream function (see (3.1)). From (3.10), any bi-trace of the stropholysis Q∗ is given
by

Q∗iik = Q∗iki = Q∗kki = − 2
3
(u′kΨ ′i ), k , (3.11)

which vanishes in homogeneous turbulence.

3.7. Information carried by the structure tensors

When considered together, Dij and Fij give a fairly detailed description of the turbu-
lence structure. For example, d11 ≈ 0 and f11 ≈ 1 means that the dominant large-scale
structures are very nearly two-dimensional eddies aligned with the x1-axis, with mo-
tion confined in the plane normal to the eddy axis and organized in a large-scale
circulation. We call structures of this type vortical eddies (see figure 1a). On the other
hand, d11 ≈ 0 and f11 ≈ 0 corresponds to two-dimensional structures aligned with
the x1-axis; motion is confined along the eddy axis in the form of jets and wakes as
opposed to circulation around the axis. We call turbulence structures of this second
type jetal eddies (see figure 1b). In general, a turbulence field includes both vortical
and jetal eddies, which can be correlated or uncorrelated. We refer to structures
having correlated jetal and vortical motion as helical eddies (see figure 1c). In later
sections (for example see § 7) these properties of Dij and Fij are shown using DNS
data.

The second-rank dimensionality and circulicity tensors represent one-point correla-
tions that carry non-local information about the structure of a turbulent flow. This can
be demonstrated by again considering the simple problem of homogeneous turbulence
subjected to mean rotation. In this case, the rapid-pressure fluctuations pr are given
by (see KR94 and Reynolds 1976)

1

ρ
pr,kk = Ωzω

′
z , (3.12)

where Ω is the mean vorticity vector. Using (3.1) and (3.12), one can show that for
homogeneous turbulence with uniform density ρ(t)

1

ρ2
pr,zp

r
,z = ΩmΩnFnm. (3.13)

Clearly in this simple case Fij carries the non-local information contained in the
intensity of the rapid pressure gradient.
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(a)

(b)

(c)

x1

x1

x1

r11 = 0,  d11 = 0,  f11 = 1

r11 = 1,  d11 = 0,  f11 = 0

r11 = α ,  d11 =  0,  f11 = 1 – α

Figure 1. Schematic diagram showing idealized two-dimensional structures (eddies) in homogeneous
turbulence and the associated componentality, dimensionality, and circulicity: (a) vortical eddy, (b)
jetal eddy, and (c) helical eddy.

The normalized inhomogeneity tensor c reflects the degree of inhomogeneity of
the turbulence field and is identically zero in homogeneous turbulence. In regions of
inhomogeneous flow where inhomogeneity effects are strong one can expect at least
some of the components of c to be O(1), whereas in regions where local homogeneity
prevails one finds that all components of c are small. Some of the examples we
consider later will help clarify the role of c.

In § 2.2, we saw that the third-rank stropholysis tensor Q∗ijk is non-zero as a direct
result of the breaking of reflectional symmetry in the velocity spectrum caused by
mean rotation, hence the name stropholysis. The evolution equation for Q∗ (see KR94
and Appendix B) and numerical simulations (see § 5) show that under irrotational
mean strain, irrespectively of the rate of strain, Q∗ will remain zero if it is initially
zero. Only mean rotation can create Q∗ and mean strain (if also present) can only act
to modify Q∗ once it has been generated.

Finally, note that the presence of the turbulence stream function components
in these definitions means that the structure tensors cannot be easily measured
in experiments. On the other hand, obtaining these tensors from direct numerical
simulations is a relatively straightforward task, and this, combined with the availability
of transport equations for these tensors (see KR94 and Appendix B), can lead to a
better understanding of the dynamical role of the turbulence structure. This insight
can in turn be used as the foundation for the formulation of simplified structure-based
one-point models that incorporate the key physics without necessarily relying directly
on all of these tensors and their transport equations (for example see KR94 and
Reynolds & Kassinos 1995).
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4. Constitutive relations and identities
The isotropic tensor identity (Jeffreys 1931; Mahoney 1985)

εipqεjts = δijδptδqs + δitδpsδqj + δisδpjδqt − δijδpsδqt − δitδpjδqs − δisδptδqj (4.1)

can be used to put (3.2) in the form

Rij +Ψ ′n,iΨ ′n,j︸ ︷︷ ︸
Dij

+Ψ ′i,nΨ ′j,n︸ ︷︷ ︸
Fij

− (Ψ ′i,nΨ ′n,j +Ψ ′j,nΨ ′n,i)︸ ︷︷ ︸
Cij+Cji

= δijq
2. (4.2)

Note that (4.2) relates the turbulence stresses to the new one-point second-rank
turbulence structure tensors introduced in § 3. Since three of the four tensors in
(4.2) can be linearly independent, this constitutive equation offers an indication that
componentality alone (found in Rij) is not sufficient to completely specify the state of
the turbulence. Taking the trace of (4.2) and noting that

Fkk = Dkk, (4.3)

one obtains

Ckk = Dkk − q2. (4.4)

A general third-rank tensor can be decomposed into the sum of six subtensors, and
the tensor Q can be represented by (see KR94)

Qijk = 1
6
q2εijk + 1

3
εikmRmj + 1

3
εjim(Dmk − Cmk) + 1

3
εkjm(Fmi − Cim) + Q∗ijk. (4.5)

Using the definitions of the second-rank tensors and (3.9), one can show that

Rij = εimpQmjp, Dij − Cij = εimpQpmj , Fij − Cji = εimpQjpm. (4.6)

Being fully symmetric, Q∗ makes no contribution to R , D , F , and C . Therefore, none
of the second-rank tensors contains the information in Q∗.

In the general case, the new structure tensors and the Reynolds stress tensor are
related by the full forms of (4.2) and (4.5). A number of special cases exist, where
additional relationships develop between these, in effect reducing the number of
independent components that must be known for a full description of the state of the
turbulence. Next we consider some of these special cases in detail.

4.1. Special case: homogeneous turbulence

For homogeneous turbulence the definition of dimensionality (3.3) has an equivalent
representation in terms of the velocity spectrum tensor Eij(k) ∼ ûiû∗j

Dij =

∫
kikj

k2
Enn(k) d3k, (4.7)

where k is the wavenumber vector and ûi are the velocity Fourier components. The
dimensionality Dij as defined in (4.7) appears also in the work of Kida & Hunt (1989)
who recognized the importance of wavenumber anisotropy in the interaction between
large and small scales, and in slightly different form in the work of Cambon et al.
(1992). Similarly, the circulicity definition (3.4) becomes

Fij =

∫
Fij(k) d3k, Fij(k) ∼ k2Ψ̂iΨ̂

∗
j =

ω̂iω̂
∗
j

k2
, (4.8)

where Fij(k) ∼ k2Ψ̂iΨ̂
∗
j is the circulicity spectrum tensor, and Ψ̂i and ω̂i are the

stream function and vorticity Fourier components. From (4.7), (4.8) follows that for
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homogeneous turbulence

Rkk = Dkk = Fkk = q2. (4.9)

The inhomogeneity tensor Cij vanishes in homogeneous turbulence (see (3.6)), and
the fundamental constitutive equation (4.2) takes the form

Rij + Dij + Fij = q2δij . (4.10)

Two tensors in (4.10) can be linearly independent. By carrying only R as a model vari-
able, RST models effectively lump together information found in the dimensionality
D and circulicity F . Therefore, RST models are not always sensitive to differences in
dynamic behaviour associated with the different dimensionality in homogeneous tur-
bulence. Two one-point tensors are needed in order to capture both componentality
and dimensionality information; for example one might use r̃ and d̃ as in the linear
M(r̃ , d̃) model of Appendix C.

The analysis in § 2.2, shows that stropholysis Q∗ information must also be included
in the presence of mean or frame rotation, and so in Appendix C we also give a
linear M(r̃ , d̃ ,Q∗) model. For homogeneous turbulence the third-rank tensor Q can
be developed from the fourth-rank tensor M (see (2.3)) according to

Qijk = εipqMjqpk. (4.11)

Note that in this case both Qijk and Q∗ijk become bi-trace free (see (3.10) and (3.11))

Qiik = Qiki = Qkii = 0, Q∗iik = 0, (4.12)

and because Cij is zero in this case, (4.5) and (4.6) simplify into

Qijk = 1
6
q2εijk + 1

3
εikmRmj + 1

3
εjimDmk + 1

3
εkjmFmi + Q∗ijk (4.13)

and

Rij = εimpQmjp, Dij = εimpQpmj , Fij = εimpQjpm. (4.14)

4.2. Special case: parallel flows

In later sections we consider DNS results from fully developed channel flow and
temporally developing plane wakes and mixing layers, which are all parallel mean
flows having a single direction of inhomogeneity. Here we show that in these flows
theory predicts that special relationships develop between the structure tensors and
the turbulence stresses. For the sake of clarity (and without the loss of generality), the
direction of inhomogeneity is taken to be along the x2-axis. Under these conditions,
one can show that the inhomogeneity tensor C must be of the form

C =

(
C11 C12 C13

0 C11 + C33 0
C31 C32 C33

)
. (4.15)

Using (4.3) and (4.4) with (4.15) one can show that

C22 = 1
2
(Dkk − q2), (4.16)

and then using (4.16) in the (22)-component of (4.2) gives

R22 + F22 = D11 + D33. (4.17)

Realizing that Dkk = Fkk in (4.16), we can also write

R22 + D22 = F11 + F33. (4.18)
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In parallel flows the invariants of the anisotropy tensor c̃ij also satisfy special rela-
tionships. For example, it follows from (4.15) that c̃ij must be of the form

c̃ij =

(
c̃11 c̃12 c̃13

0 1
6

0

c̃31 c̃32 −(c̃11 + 1
6
)

)
ckk, ckk = Cmm/Dpp. (4.19)

The tensor c̃ij in (4.19) is non-symmetric and therefore can be expressed in principal
coordinates only under the condition

c̃11(c̃11 + 1
6
) + c̃13c̃31 + 1

144
> 0, (4.20)

which guarantees three real eigenvalues for c̃ij . Note that c̃11, c̃13, and c̃31 can be
positive or negative in different parts of the flow field and hence (4.20) is not a trivial
condition. However, we have found (4.20) to be satisfied both in fully developed
channel flow and in temporally evolving plane wakes and mixing layers. Therefore, in
these flows c̃ can be put in principal coordinates, and in these coordinates, one can
show easily that the invariants of c̃ satisfy the relationship

IIcφ = 6IIIc − 1
36
φ3, φ = ckk. (4.21)

All of the key results in this section (including (4.16), (4.17) and (4.21)) have been
verified using direct numerical simulations of fully developed channel flow (Kim, Moin
& Moser 1987; Kim 1992, personal communication) and of temporally evolving plane
wakes and mixing layers (Moser, Rogers & Ewing 1998; Rogers & Moser 1994).

4.3. Special case: 2D–2C turbulence

In §§ 8 and 9 we consider numerical simulations of self-similar plane wakes and mixing
layers. An interesting feature of these flows is the approximate two-componentality
(2C) (r33 � r11, r22) and two-dimensionality (2D) (d33 � d11, d22) that develops when
external two-dimensional forcing is applied initially. In these ‘forced’ flows the rela-
tionships between the various structure tensors assume special forms. Here we consider
an idealized 2D–2C turbulence field where the turbulent velocity components are

u′1 = u′1(x1, x2), u′2 = u′2(x1, x2). (4.22)

In this case, the vector stream function Ψ ′i has a single non-zero component aligned
with the axis of independence x3, that is

Ψ ′3 = Ψ ′3(x1, x2), Ψ ′1 = Ψ ′2 = 0, (4.23)

and as result all the components of the inhomogeneity tensor Cij vanish even in the
presence of inhomogeneity. This feature of 2D–2C turbulence can be easily verified
by writing the definition of Cij in an expanded form

Cij = Ψ ′i,kΨ ′k,j = Ψ ′i,1Ψ ′1,j +Ψ ′i,2Ψ ′2,j +Ψ ′i,3Ψ ′3,j . (4.24)

The first two terms on the right-hand side of (4.24) vanish because Ψ ′1 = Ψ ′2 = 0
everywhere in the field, and hence the gradients Ψ ′1,j and Ψ ′2,j must vanish also for all j.
The last term vanishes because x3 is an axis of independence and hence Ψ ′i,3 = 0. The
same facts determine the forms of the second moments, which for 2D–2C turbulence
are

Fij =

(
0 0 0
0 0 0
0 0 q2

)
, Rij =

(
q2 − α −β 0
−β α 0
0 0 0

)
, Dij =

(
α β 0
β q2 − α 0
0 0 0

)
. (4.25)
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Case Sq2
0/ε0 Sq2/ε (min–max)

AXK 0.96 1.0–2.1
AXM 96.5 38.2–96.5
EXO 0.7 0.7–3.0
EXQ 70.7 47.6–70.7
PXA 1.0 1.0–3.0
PXF 154.0 63.6–154.0

Table 1. Parameters for the simulations of Lee & Reynolds (1985).

Here q2 = Ψ ′3,1Ψ ′3,1 +Ψ ′3,2Ψ ′3,2, α = Ψ ′3,1Ψ ′3,1 and β = Ψ ′3,1Ψ ′3,2. A modified Kronecker
delta tensor can be defined, such that

δ̃ij = δij − δi3δj3 =

{
1 if i = j, for i, j = 1, 2

0 otherwise,
δ̃ii = 2. (4.26)

Using (4.25),

Dij + Rij = q2δ̃ij , Fij = q2(δij − δ̃ij), Cij = 0. (4.27)

5. Homogeneous turbulence subjected to irrotational strain
Irrotational mean deformation preserves reflectional symmetry, and as a result, the

stropholysis Q∗ is zero in all the flows considered in this section. RDT analysis based
on the evolution equations for R and D (see KR94 and Appendix B) shows that
if present initially (as for example in initially isotropic turbulence) the equality of
the Reynolds stress and dimensionality anisotropies is preserved by rapid irrotational
mean deformation with

r̃ij = d̃ij = − 1
2
f̃ij . (5.1)

Here we explore the validity of (5.1) when the irrotational mean deformation is slow.
In the discussion that follows, we use the DNS data of Lee & Reynolds (1985,

hereafter denoted by LR), and consider two cases of axisymmetric contraction (AXK,
AXM), two cases of axisymmetric expansion (EXO, EXQ), and two cases of plane
strain (PXA, PXF). In all of these cases a constant and uniform mean strain was
applied to an initially isotropic turbulence. For each flow, we have chosen the simula-
tions corresponding to the slowest mean strain (smallest Sq2

0/ε0) and the most rapid
mean strain (largest Sq2

0/ε0) as shown in table 1. Here the subscript 0 denotes initial
values, and S is the mean strain rate

Sij = dŪi/dxj, S =
√
SijSij/2.

Following the notation of LR, we define the reference total strain by

C = exp

∫ t

0

Sdt′ = eSt. (5.2)

and use this as the dimensionless time variable in the discussion of evolution histories
that follows.
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Figure 2. DNS results (Lee & Reynolds 1985) showing the components of (a) the Reynolds
stress anisotropy r̃ij , (b) dimensionality anisotropy d̃ij , and (c) circulicity anisotropy f̃ij tensors in
axisymmetric contraction flow: , 11 component; , 22 and 33 components. Thin lines
correspond to Sq2

0/ε0 = 0.96 (case AXK) and thick lines to Sq2
0/ε0 = 96.5 (case AXM). In this

flow the eddies become aligned with the axial direction of positive mean strain x1. The stretching
of axial vorticity results in an increase of r̃22 and r̃33 relative to r̃11 and an increase in the axial
large-scale circulation f̃11. In the rapidly strained case r̃ij = d̃ij = − 1

2
f̃ij . The difference in the

evolutions between the rapidly and slowly strained cases is relatively small. DNS data points are
connected by straight lines. Case AXM agrees with RDT.

5.1. Irrotational axisymmetric strain

The mean strain-rate tensor considered here is of the general form

Sij = ± 2√
3
S

 1 0 0
0 − 1

2
0

0 0 − 1
2

 , S =
√
SijSij/2, (5.3)

with the plus sign corresponding to the case of axisymmetric contraction and the
minus sign to the case of axisymmetric expansion.

5.1.1. Axisymmetric contraction

The time histories of the anisotropies r̃ , d̃ , and f̃ for the two cases of axisymmetric
contraction are shown in figure 2. The effect of the strain on the anisotropy invariants
of each tensor is shown on the anisotropy invariant maps (AIM) of figure 3, where
important limiting states have been identified. The effect of the axisymmetric strain
is to stretch and orient the eddies so that they tend to become aligned with the axial
direction of positive strain (S > 0). This is accompanied by an increase in the axial
large-scale circulation (f̃11) and a decrease in the axial stress r̃11 and dimensionality d̃11

as the axial vorticity is being stretched. At the end of the simulations, nearly all of the
large-scale circulation is concentrated around the axial direction (f11 → 1, f̃11 → 2

3
),

and the turbulence is almost independent of the axial direction (d11 → 0, d̃11 → − 1
3
).

Both of these effects can be explained in terms of the strong alignment of elongated
vortical eddies with the axial direction. The eddy stretching and alignment are most
effective in the rapid case (Sq2

0/ε0 = 96.5) where the turbulence at the end reaches an
approximate 2D–2C state (see figure 3b). This case belongs to the RDT regime, and
(5.1) holds throughout the deformation. At slower strain rates (see figure 2), the results
are qualitatively similar, but note that the RDT relation (5.1) is only approximately
satisfied. Yet, despite the wide difference in the initial Sq2

0/ε0 between the slow and
rapid cases, the evolution history of the anisotropy f̃ is only weakly modified when
plotted against total strain. We have found that the insensitivity of circulicity to strain
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Figure 3. DNS results (Lee & Reynolds 1985) showing the anisotropies for the Reynolds stress (�),
dimensionality (•), and circulicity tensor ( e) shown on the anisotropy invariant map (AIM) for the
axisymmetric contraction flow: (a) case AXK (Sq2

0/ε0 = 0.96); (b) case AXM (Sq2
0/ε0 = 96.5). The

circulicity anisotropy follows the axisymmetry line towards the one-component point, those of the
Reynolds stress and dimensionality follow the axisymmetry line towards the two-component point.
In both the rapidly and slowly strained cases the circulicity anisotropy remains considerably higher
than those of the Reynolds stress and dimensionality.

rate is a common feature of all the cases of irrotational mean deformation considered
here. In fact, the insensitivity of circulicity has been observed in flows undergoing quite
different modes of mean deformation. In figure 2 the dimensionality and Reynolds
stress evolution histories are also only weakly dependent on the rate of straining, but
there are cases (considered below) where these two anisotropy histories are strongly
dependent on the rate of strain.

5.1.2. Axisymmetric expansion

The corresponding results for two cases of axisymmetric expansion are shown
in figures 4 and 5. This flow exhibits counter-intuitive behaviour that makes it a
challenge to turbulence modelling. The effect of the negative axial strain (S < 0) in
these cases is to concentrate the eddies in thin, disk-like regions normal to the axis of
symmetry, while the weaker positive strain causes a mild radial stretching. Sustained
axisymmetric expansion produces pancake turbulence, in which the symmetry axis
becomes the direction with the most energetic velocity fluctuations, but with very
little large-scale circulation around it (f̃11 → − 1

3
). As expected, in the rapid case

(Sq2
0/ε0 = 70.7) the exact RDT result (5.1) holds true, and r̃11 ≈ d̃11 → 1

6
towards

the end of the simulation. However in the weak strain case, for which Sq2
0/ε0 = 0.7,

there is a large disparity between the anisotropy of the dimensionality tensor, which
is very weak (d̃11 → 0.01), and the anisotropy of the Reynolds stress tensor, which is
quite strong (r̃11 → 1

3
). Clearly, the RDT result (5.1) is not valid in slowly strained

expansion flows, which perhaps is not surprising, but note that the level of the stress
anisotropy r̃ , shown by the square symbols on the anisotropy invariant map (AIM)
in figure 5, is higher in the slower case (figure 5a) than it is in the rapid case (figure
5b). In fact the stress anisotropy reached in the slowly strained case exceeds the
theoretical limit (see figure 5b) placed by RDT for rapid axisymmetric expansion.
This result, which was noted by LR, is surprising since one would expect that the
more rapid mean deformation would push the stress anisotropy to higher values. We
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Figure 4. DNS results (Lee & Reynolds 1985) showing the components of (a) the Reynolds
stress anisotropy r̃ij , (b) dimensionality anisotropy d̃ij , and (c) circulicity anisotropy f̃ij tensors in
axisymmetric expansion flow: , 11 component; , 22 and 33 components. Thin lines
correspond to Sq2

0/ε0 = 0.71 (case EXO) and thick lines to Sq2
0/ε0 = 70.7 (case EXQ). In this

flow the negative axial and positive lateral mean strain concentrate the eddies in thin pancake-like
structures normal to the axial direction. The result is an increase of the axial Reynolds stress (̃r11)
relative to the lateral stress components, and an increase of the lateral circulicity components f̃22

and f̃33 relative to the axial component. In the rapidly strained case, r̃ij = d̃ij = − 1
2
f̃ij . The Reynolds

stresses are much more anisotropic in the slowly strained case than they are in the rapidly strained
case! DNS data points are connected by straight lines. Case EXQ agrees with RDT.
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Figure 5. DNS results (Lee & Reynolds 1985) showing the anisotropies for the Reynolds stress
(�), dimensionality (•), and circulicity tensor ( e) shown on the anisotropy invariant map (AIM)
for the axisymmetric expansion flow: (a) case EXO (Sq2

0/ε0 = 0.71); (b) case EXQ (Sq2
0/ε0 = 70.7).

The anisotropies of the Reynolds stress and dimensionality fall on the axisymmetry line towards the
one-component point; they are practically identical to each other in the rapidly strained case, but
the anisotropy of the Reynolds stress is considerably higher that of the dimensionality in the slowly
strained case. −II r reaches higher values in the slowly strained case (on the left) than it reaches in
the rapidly strained case (on the right). The anisotropy of the circulicity, falling on the axisymmetry
line towards the two-component line, is insensitive to the rate of straining.

see the same effect in the experimental results of Choi (1983), thus showing that this
effect is not in any way related to the low Reynolds numbers of the simulations of
LR. This counter-intuitive result should therefore be reflected in turbulence models.
The combined stress–dimensionality–circulicity information clarifies these effects. The
constitutive equation (4.10) shows that r̃ij + d̃ij + f̃ij = 0; hence given the insensitivity
of circulicity to strain rate (see figure 4c), the weak dimensionality anisotropy in
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Figure 6. DNS results (Lee & Reynolds 1985) showing the components of the (a) Reynolds stress
anisotropy r̃ij , (b) dimensionality anisotropy d̃ij , and (c) circulicity anisotropy f̃ij tensors in plane
strain flow: , 11 component; , 22 component; , 33 component. Thin lines
correspond to Sq2

0/ε0 = 1.0 (case PXA) and thick lines to Sq2
0/ε0 = 154.0 (case PXF). In this flow,

the vorticity stretching in the direction of positive mean strain x3 results in an increase in f̃33

(large-scale circulation) and a decrease in r̃33 and d̃33. In the rapidly strained case, r̃ij = d̃ij = − 1
2
f̃ij .

Note that r̃22 reaches higher values in the slowly strained case than it reaches in the rapidly strained
case. The opposite is true for d̃22. DNS data points are connected by straight lines. Case PXF agrees
with RDT.

the slowly strained case must be compensated by an augmented stress anisotropy.
Equation (4.10) can be used to place a theoretical limit to the maximum level of
stress anisotropy that can be reached in the slowly strained case, corresponding to
a complete vanishing of the dimensionality anisotropy (d̃ij = 0). As shown in figure
5(a) the slow theoretical limit is well beyond the RDT limit.

5.2. Plane strain

The mean strain rate tensor for the plane strain cases has the general form

Sij = S

 0 0 0
0 −1 0
0 0 +1

 . (5.4)

The evolution histories of the anisotropies r̃ , d̃ , and f̃ are shown in figure 6 for
the two different initial values of Sq2/ε (see table 1). Sustained plane strain produces

turbulence consisting of eddies elongated in the direction of positive strain (d̃33 → − 1
3
),

which have very strong circulation around their axes (f̃33 → 2
3
), but very little motion

along their axes (r̃33 → − 1
3
). Note that this corresponds to the same 2D–2C limiting

state of vortical eddies aligned with direction of positive strain that is produced
by axisymmetric contraction. However, plane strain differs from the axisymmetric
contraction flow in that the limiting state is reached along a different path in the
AIM (see figure 7). As in the case of the axisymmetric expansion flows, the RDT
result (5.1) is valid only in the rapid case. In all the slower cases, d̃ differs significantly
from r̃ . As in the axisymmetric strain cases, the circulicity history is insensitive to
strain rate in the plane strain simulations despite the wide variation in the initial
value of Sq2/ε.

5.3. Explanation of the slow strain effects

Using the simulations of LR, we have shown that the RDT equality (5.1) is not valid
when the mean deformation is slow. A puzzling aspect of this result is found in the
axisymmetric expansion and plane strain flows, where slow strain produces a higher
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Figure 7. DNS results (Lee & Reynolds 1985) showing the anisotropies for the Reynolds stress
(�), dimensionality (•), and circulicity tensor ( e) shown on the anisotropy invariant map (AIM)
for the plane strain flow: (a) case PXA (Sq2

0/ε0 = 1.0); (b) case PXF (Sq2
0/ε0 = 154.0). In the rapidly

strained case (on the right), the anisotropies of the Reynolds stress and dimensionality are identical
and fall on the axisymmetry line towards the two-component point. In the slowly strained case
(on the left) the Reynolds stress anisotropy is higher than the dimensionality anisotropy and −IIr
reaches higher values than it reaches in the rapidly strained case (on the right). The circulicity
anisotropy is relatively insensitive to the rate of straining.
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Figure 8. DNS results (Lee & Reynolds 1985) showing a comparison of the second invariant of d̃
with the second invariants of r̃ and f̃ under irrotational mean deformation at different Sq2/ε. (a)
Axisymmetric contraction, (b) axisymmetric expansion, and (c) plane strain: �, IId vs IIr; �, IId vs
IIf . The 45◦ dashed line represents a hypothetical case where −IId is equal to −IIr or −IIf . The
smaller the slope of a line representing actual data, the smaller the anisotropy of dimensionality
(−IId) is relative to the anisotropy that it is being compared to (−IIr or −IIf). DNS data points
are connected by straight lines.

level of Reynolds stress anisotropy than does rapid strain, while the opposite holds
true for the dimensionality anisotropy. These effects are shown clearly in figure 8
where −IId is plotted against −IIr and −IIf for each of the flows (see (3.7)). These
observations raise three important questions:

(i) How is it possible that −IIr is bigger for slow rather than for rapid straining?
(ii) What triggers the breaking of the equality r̃ = d̃ in the slow cases?

(iii) What determines which anisotropy components grow at the expense of the
others?
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(b) Comparison of slow terms in the r11 equation for case EXO; (c) comparison of the exponential
and trigger terms in equation (5.9) calculated using the DNS results of Lee & Reynolds (1985).

To answer the first question we take a closer look at the equation for rij ,

drij
dt∗

= pij + trij︸ ︷︷ ︸
rapid

+ tsij + εij︸ ︷︷ ︸
slow

. (5.5)

Here t∗ = S∗t is the non-dimensional time based on the magnitude of the largest
diagonal strain component, with S∗ = 2S/

√
3 for axisymmetric strain, and S∗ = S for

plane strain (see (5.3)). The rapid and slow terms on the right-hand side of (5.5) are

trij =
2

q2S∗
Snm(Mimnj +Mjmni), pij =

2

S∗
Snmrnmrij − 1

S∗
(Sikrkj + Sjkrki) (5.6)

and

tsij =
1

q2S∗
Ts
ij , εij = εrij + εkij , εrij = − 2ν

q2S∗
(ui,kuj,k), εkij = −εrmm rij . (5.7)

Here trij and tsij are the familiar rapid and slow pressure–strain-rate terms (see (A 1)),
pij is a production-rate tensor, and εij a dissipation-rate tensor. For the sake of clarity,
we limit our discussion to the case of axisymmetric expansion and consider only the
axial component ( )11 of (5.5). The balance of the rapid and slow contributions in (5.5)
is shown in figure 9(a) for both the slowly strained (EXO) and rapidly strained (EXQ)
runs. Note that the contribution of the rapid terms is relatively insensitive to the rate
of straining, but that of the slow terms is quite sizable in the slowly strained run and
practically negligible in the rapidly strained case. Figure 9(b) shows the individual
contributions of the various slow terms for the weak-strain run (EXO). Note that the
slow pressure–strain-rate term is negligible, and hence the slow contribution is solely
due to the dissipation term εij . The contribution due to εr11 is negative as expected,
but the positive contribution due to εk11, which arises from the trace-normalization of
the Reynolds stress tensor, is slightly larger, so that the net effect of the dissipation
term is to increase r11. This additional contribution due to the dissipation term in
case EXO, acting to complement the rapid terms, explains how IIr can be larger in
this case than in the rapid case. However, this effect does not explain why r̃11 grows
at the expense of d̃11. The problem is that the term εk11, which is the term that helps

push r̃11 to higher values, has a counterpart in the d̃11 equation (Appendix B), which
is exactly equal to εk11 as long as rij = dij . To answer the remaining questions we need
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to look at the evolution equation for the anisotropy difference ∆̃ij = r̃ij − d̃ij . The
transport equations for r , d , and f (see Appendix B) can be used to write down the
evolution equation for ∆̃ij for the case of homogeneous turbulence. The nonlinear

terms that appear in the evolution equation for ∆̃ij are found to be negligible in the
simulations of LR (see Appendix B), an observation also made by Kevlahan & Hunt
(1997) whose general conclusions are consistent with the present analysis. The rapid
terms in the ∆̃ij equation involve two fourth-rank tensors, but for a simplified analysis

these may be modelled with a linear representation in d̃ and r̃ (see Appendix C),
which is exact for weakly anisotropic turbulence. In fact for the irrotational flows
considered here, this linearized representation of the rapid effects is quite accurate for
C . 3. With these simplifying assumptions, we obtain

d∆̃ij
dt∗

=
1

S∗
[

rapid︷ ︸︸ ︷
− 5

7
(Sik∆̃kj + Sjk∆̃ki) + 10

21
Snm∆̃nmδij + 2Snmr̃nm∆̃ij −

slow︷ ︸︸ ︷
εrmmS

∗∆̃ij]︸ ︷︷ ︸
exponential

+ (εrij − εdij)︸ ︷︷ ︸
trigger

(5.8)

where εdij = −2ν(u′k,iu′k,j)/(q2S∗) and εdmm = εrmm = −2ν(u′k,iu′k,i)/(q2S∗). For the case of

axisymmetric expansion, the ∆̃11 component of (5.8) simplifies to

d∆̃11

dt∗
= [−(r̃11 − 25

21
)− εrmmS∗]∆̃11︸ ︷︷ ︸

exponential

+ (εr11 − εd11)︸ ︷︷ ︸
trigger

. (5.9)

The terms within square brackets contribute to exponential growth. Note that the last
of these terms arises from the decay of the turbulent kinetic energy and complements
the effect of the rapid terms. The exponential terms, however, cannot create ∆̃ij if it
is initially zero. Only the last term, representing the differential dissipation of r̃ and
d̃ , can initially generate ∆̃ij . The trigger term, representing the difference between εr11

and εd11, determines the sign of ∆̃11. That is to say, whether r̃11 will grow at the expense

of d̃11 or vice versa is determined by the sign of this last term. A comparison of the
exponential terms and the trigger term is shown in figure 9(c) for case EXO. Note
that εr11 − εd11 > 0, which correctly implies that ∆̃11 = r̃11 − d̃11 > 0. Note however,
that the exponential term contributes more to the subsequent evolution of ∆̃11 and
in the axisymmetric expansion case, an exponential growth of ∆̃11 is inevitable since
−(r̃11 − 25

21
)− εrmmS∗ > 0 at all times.

These basic principles can help explain the difference between the various r̃ij
components and d̃ij in the case of slow plane strain and slow axisymmetric contraction.
For example, in the slow axisymmetric contraction flow the exponential term is given
by (r̃11 − 25

21
)∆̃11, and because (r̃11 − 25

21
)− εrmmS∗ < 0 at all times the exponential term

suppresses any ∆̃ij produced by the different rates of dissipation for r̃ij and d̃ij .

5.4. Return to isotropy?

Interesting behaviour is also encountered upon removal of the mean strain following
axisymmetric expansion and plane strain. In their simulations LR found a return to
isotropy of the Reynolds stresses upon removal of the mean straining following an
axisymmetric contraction. However, for turbulence that had been previously distorted
by an axisymmetric expansion (pancake turbulence) they found a slight increase in
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the stress anisotropy following removal of the mean straining. Similarly, for the case
of plane strain, they found that some of the components of the stress anisotropy
increased while others decreased after the removal of the mean straining. These
results are consistent with the analysis of the previous section: stress anisotropy
components that under slow straining grow beyond their corresponding RDT limit
are also the ones which diverge from isotropy upon removal of the straining. This
suggests that essentially the same structure-related mechanism that was described
in the previous section is active both during the slow mean straining mode and
after its removal. In the later case, the larger scales can be expected to provide an
effective strain rate on smaller scales. As explained by Kida & Hunt (1989), this
large-scale strain rate is more effective in stretching structures along directions in
which they had been stretched by the previous mean straining. Hence, the effects
that help push the Reynolds stress anisotropy to levels that exceed the RDT limit
during slow straining might remain active, at least initially, after the removal of the
mean straining. Unfortunately available experimental results are inconclusive on this
issue. For example, in his experiments Choi (1983) found that the rate of return
to isotropy after removal of the mean deformation was much smaller following
axisymmetric expansion than following axisymmetric contraction. He also found that,
the higher the stress anisotropy reached during the expansion mode, the slower
was the subsequent rate of return to isotropy. Clearly, carefully designed numerical
simulations (or experiments) are needed to clarify these subtle features, and we are
currently doing these simulations.

6. Homogeneous shear flow
In the discussion that follows, we use a time-evolving hydrodynamic field (case

C128U) from the direct numerical simulations of Rogers & Moin (1987). In case
C128U, a fully developed stage is reached for 10 6 St 6 16 during which the
turbulence Reynolds number Reτ = q4/(εν) reaches values of up to 1500 and Sq2/ε
(where G12 = S is the shear rate) is about 11. Three other cases produced similar
results for the one-point structure tensors and are not discussed here.

The evolution histories for the normalized second-rank tensors r , d , and f and
the third-rank normalized stropholysis tensor q∗ = Q∗/Rnn are shown in figure 10.
The r11 component of the normalized stress tensor grows at the expense of the other
two normal stresses. The dominant circulicity component is f22, with f11 and f33

maintaining comparable levels throughout the evolution history. In the case of the
dimensionality tensor, both d22 and d33 dominate over d11.

The flow appears to be reaching equilibrium towards the end of the simulation,
with approximately constant Sq2/ε and P/ε and the components of r approaching
values that are very close to the experimentally observed asymptotic equilibrium
values (Tavoularis & Karnik 1989). For example, the final values for the second-rank
tensors, corresponding to the highest Reτ reached in the simulation, are shown in table
2. These observations suggest that equilibrium turbulence in this flow consists mainly
of elongated structures, roughly aligned along the mean flow direction (d11 ≈ 0.20),
and with the dominant motion along the axes of the structures (r11 ≈ 0.50), i.e. jetal
motion. Note that d22 ≈ d33, which suggests that the dimensionality is close to being
axisymmetric about the x1-axis. The near axisymmetry of d is also reflected on the
AIM shown in figure 11, where the anisotropy of the dimensionality tensor falls on
the axisymmetry line (towards the two-dimensional point). No such near axisymmetry
is observed for r and f . In fact, the near axisymmetry of d is consistent with the
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Figure 10. DNS results (Rogers & Moin 1987) showing the normalized Reynolds stress, circulicity,
dimensionality, and stropholysis tensors for homogeneous shear (case C128U): ——, 11 component;

, 22 component; −−-−−, 33 component; - - - -, 12 component. DNS data points are connected
by straight lines.

ij r∞ij d∞ij f∞ij
11 0.52 0.17 0.31
22 0.19 0.39 0.42
33 0.29 0.44 0.27
12 −0.16 −0.08 0.24

Table 2. Final values for r , d , and f from the simulations (C128U) of Rogers & Moin (1987).

hairpin-like structures with statistically axisymmetric legs observed by Rogers & Moin
(1987).

A comparison of the structures in this flow to those found in the RDT limit of
inviscid infinite total rapid shear is instructive. In the RDT case, the final state consists
of jetal eddies (no large-scale circulation around the eddy axes) completely aligned
with the streamwise direction so that r11 → 1, d11 → 0 and f11 → 0. So there is a
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Figure 11. (a) DNS results (Rogers & Moin 1987) showing a comparison of the anisotropy of
d (•) with those of r (�) and f (�) for homogeneous shear (case C128U) on the anisotropy invariant
map (AIM); (b) comparison of the second invariants of the anisotropies for case C128U. Note that
the dimensionality anisotropy falls on the axisymmetry line (see a) and also that is considerably
smaller than the Reynolds stress and circulicity anisotropies (see a and b).

marked difference in the turbulence structure in these two situations. As will be shown
in § 7, the structure tensors indicate that the turbulence structure near the centreline
of fully developed channel flow is similar to that found in equilibrium homogeneous
shear flow.

As shown in figure 11, r̃ and f̃ reach anisotropy levels that are considerably higher
than those reached by d̃ . Figure 11(b) shows a comparison of the second invariant
−IId with −IIr and −IIf . Clearly, the dimensionality remains more isotropic than
both the Reynolds stresses and the circulicity. These results are in general agreement
with what was observed in the case of irrotational strain (§ 5) where, with the exception
of the RDT cases, −IId was found to be lower than both −IIr and −IIf .

Stropholysis plays an important role in flows with strong mean rotation because it
modifies the rapid pressure–strain-rate term. As shown in the plot for the normalized
stropholysis tensor q∗ijk = Q∗ijk/Rnn (see figure 10d) only q∗113, q

∗
123, and q∗333 (out of

the nine independent components of the fully-symmetric q∗ tensor) are significantly
energized. These components contribute to the rapid pressure–strain-rate term (see
(A 4)). Note that q∗113 is roughly equal to the negative of q∗333, indicating a transfer of
energy from r33 to r11. One can decompose the rapid pressure–strain-rate term into
three parts (see Appendix A) given by

T
rapid
ij /q2 = (TS

ij + Tω
ij + T

Q
ij )/q2. (6.1)

TS
ij is the contribution of the mean strain, Tw

ij involves the explicit contribution of

mean rotation, and TQ
ij involves the contribution of mean rotation through stropholy-

sis effects. Each of the three contributions TS
ij , T

ω
ij , and TQ

ij is trace-free and represents
a separate intercomponent energy transfer mechanism. In figure 12 we show a com-
parison of the three contributions. The main role of TS

ij is to drain roughly equal
amounts of energy out of the R11 and R22 components and transfer it to R33. The
off-diagonal component TS

12 tends to decrease the magnitude of the shear stress R12.
The main role of Tω

ij is simply to increase the magnitude of the shear stress R12.

The stropholysis part TQ
ij , on the other hand, returns a third of the energy that TS

ij
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Figure 12. DNS results (Rogers & Moin 1987) showing the strain, explicit-rotation, and strophol-
ysis contributions to the normalized rapid pressure–strain-rate term for homogeneous shear (case
C128U) with Sq2

0/ε0 = 4.73: ——, strain part Ts
ij/Sq

2; - - - -, explicit-rotation part Tω
ij /Sq

2; −−-−−,

stropholysis part TQ
ij /Sq

2. Ts
ij/Sq

2 transfers energy out of r11 and r22 and into r33 (see a, b, and c),

but TQ
ij /Sq

2 returns some this energy preferentially back to r11. In this case of the shear stress (see

d), Ts
ij/Sq

2 and T
Q
ij /Sq

2 oppose the increase in shear stress magnitude that is caused by Tω
ij /Sq

2.
DNS data points are connected by straight lines.

transfers from R11 and R22 into R33 back to R11. In this sense, TS
11 and T

Q
11 play

competing roles. The off-diagonal component TQ
12 acts to decrease the magnitude of

R12, thereby reinforcing the effect of TS
12. This example underscores the challenge

faced by turbulence modellers who have to devise ways to capture some stropholysis
effects, even though these are not completely parametrized by second moments like r
and d .

7. Fully developed channel flow
We begin our study of the structure tensors in inhomogeneous flows with the direct

numerical simulations of fully developed channel flow by Kim, Moin & Moser (1987),
and Kim (1992). These simulations have Reynolds numbers based on the wall shear
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Figure 13. DNS results (Kim 1992) showing the normalized Reynolds stress, circulicity, dimensional-
ity, and inhomogeneity tensors in fully developed channel flow with Reτ = 385: ——, 11 component;

, 22 component; −−-−−, 33 component; - - - -, 12 component. Near the wall d11 � r11 and
f11 � r11 reflecting the strong jetal character of the near-wall structures. For y+ & 100 the pro-
files look similar to those obtained in homogeneous shear flow. Inhomogeneity is confined to the
near-wall region, with the log-region appearing locally homogeneous.

velocity uτ of Reτ = 180 and Reτ = 385. In both cases, we take x1 and x3 to be
the homogeneous streamwise and spanwise directions, and x2 to be the wall-normal
direction.

The profiles of the normalized Reynolds stress, dimensionality, circulicity, and
symmetrized inhomogeneity tensors are shown in figure 13 for Reτ = 385. The corre-
sponding results from the Reτ = 180 case were qualitatively similar and are not shown
here, but some minor differences that were observed are discussed. Because the flow
is statistically symmetric about the channel centreline, the statistical sample in these
profiles was effectively doubled by averaging the two channel halves together. The
dominant component of the Reynolds stress tensor r11, corresponding to the fraction
of turbulent kinetic energy found in streamwise fluctuations, reaches a maximum at
y+ ≈ 8. The streamwise component d11 is smaller than r11 throughout the channel,
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Near-wall region, y+ = 3.5 Channel centreline

ij rij dij fij ij rij dij fij

11 0.84 0.03 0.09 11 0.44 0.23 0.22
22 0.00 0.38 0.62 22 0.29 0.34 0.42
33 0.16 0.59 0.29 33 0.27 0.43 0.36
12 −0.02 0.00 0.03 12 0.00 0.00 0.00

Table 3. Structure tensors in fully developed channel flow at Reτ = 385 (Kim et al. 1987).

indicating the presence of large-scale structures that are preferentially elongated in
the streamwise direction.

The components of the three normalized tensors in the near-wall region (at y+ =
3.5) and at the channel centreline are shown in table 3 for the Reτ = 385 case (with
almost identical values found in the Reτ = 180 case). Based on these values one can
argue that the near-wall structures are nearly two-dimensional (d11 ≈ 0) and roughly
aligned with the wall (r12 ≈ 0, d12 ≈ 0), have a strong jetal character (r11 � r22, r33),
very little circulation around their axes (f11 � 1), and roughly a circular cross-section
since d22 ≈ d33. These results are indicative of the streaky structures in the near-wall
region of the channel, which have been observed directly both experimentally (for
example see Smith & Metzler 1983) and in numerical simulations, including those
of Kim et al. (1987). In contrast, near the channel centreline the normalized tensors
(see table 3) give a quite different picture of the turbulence structure. The streamwise
component d11 is lower than d22 and d33, but only moderately so, indicating that the
large-scale structures are only somewhat elongated in the streamwise direction. f11 is
only moderately lower than f22 and f33, suggesting that the jetal character of these
structures is much less pronounced at the centreline than in the near-wall region.
Note that these centreline values are not far from the equilibrium values of the three
tensors in homogeneous shear flow, as estimated from the simulations of Rogers &
Moin (1987) (see table 2).

The profiles of the symmetrized inhomogeneity tensor, normalized by Dkk to give
a measure of the relative importance of inhomogeneity, are shown in figure 13(d). As
expected, cij+cji is large in the near-wall region (y+ . 30), indicating a strong degree of
inhomogeneity there. A similar inhomogeneity profile was obtained in the Reτ = 180
case, but in that case inhomogeneity values were somewhat more pronounced in the
region 10 . y+ . 30. A small residual inhomogeneity also seems to exist at the
channel centreline in both cases, which can be attributed to the gradual vanishing of
Sq2/ε (with increasing y+) as the channel centreline is approached. Note, however,
that the flow in the log-region is locally homogeneous, with the higher Reτ case reaching
a local homogeneity closer to the wall. Local homogeneity in the log-region has been
noted in the past, for example by Rogers & Moin (1987). The inhomogeneity tensor
c provides a quantitative measure of this effect. The approximate vanishing of cij
means that in the log-region one-point statistics, like R , D and F , satisfy constitutive
equations normally associated with homogeneous turbulence, for example (4.9) and
(4.10). This is good news for turbulence modelling.

The AIMs for d̃ij and r̃ij are shown in figure 14. The large difference between the
structure of the wall-region turbulence and that of the turbulence in the central core
is reflected in the AIM for d̃ij . The jetal character of the wall-region structure is also
apparent from the AIM for r̃ij . Consistent with the trend observed in homogeneous



238 S. C. Kassinos, W. C. Reynolds and M. M. Rogers

(a) (b)

(c)

0.10

0

0.0

0.16

0.12

0.1

0

0.3

0.01

0.04

0.20

0 0.05

IIIr

2D structure

–IId
y+ = 0

y+ = 3.5
Viscous region

Centreline:

y+  = 385

Axisymmetric

vortices

–0.00

–IIr

–0.005 0 0.005

IIId

–0.010 0.040.030.02

0.2

0.05

Axi
sy

m
m

etr
ic

pa
nc

ak
es

– IId

–IIr

0.08

y+ = 0.05
y+ = 3.5
y+ = 11.5
y+ = 385

Viscous region

Centreline

0.04 0.08 0.12 0.16 0.20

y+ = 0

y+ = 3.5

y+ = 12

Centreline

1C jets

Viscous

Figure 14. DNS results (Kim 1992) showing the anisotropy invariants in fully developed channel

flow at Reτ = 385. (a) anisotropy invariant map (AIM) for d̃ , (b) anisotropy invariant map for the
r̃ , and (c) comparison of −IId to −IIr .

flows, the anisotropy of the dimensionality tensor is smaller than that of the stress
tensor (see figure 14c) everywhere in the flow, except at the channel centreline where
the two anisotropies are equal but quite small.

8. Self-similar plane wake
We consider two simulations of time-developing turbulent wakes presented by

Moser et al. (1998). In one of the simulations, two-dimensional disturbances were
added initially to mimic two-dimensional forcing. This case will be referred to here
as the forced wake. The unforced wake, where no two-dimensional disturbances were
added beyond what was present in the initial conditions, was allowed to evolve long
enough to attain self-similarity. In the forced case no extended period of self-similar
growth was obtained, but a period of approximate self-similarity was used to generate
time-averaged profiles.

Following Moser et al. (1998) the cross-stream direction y is normalized by the wake
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Figure 15. DNS results (Moser et al. 1998) showing the normalized Reynolds stress, circulicity,
dimensionality, and inhomogeneity tensors in an unforced plane wake at τ = 91.5 (self-similar period):

, 11 component; , 22 component; −−-−−, 33 component; - - - -, 12 component. In the core
region, the profiles are similar to those in homogeneous shear flow (see figure 10). Inhomogeneity is
moderate except near the edge where it becomes significant, but there the non-normalized tensors
are small.

half-width b(t). The half-width is taken to be the distance between the y-locations at
which the mean velocity is half of the maximum velocity deficit magnitude U0. The
non-dimensionalization of the time variable is based on the mass-flux deficit ṁ and
the initial magnitude of the velocity deficit Ud, and is given by τ = tU2

d/ṁ.
The normalized Reynolds stress, dimensionality, circulicity and symmetrized inho-

mogeneity tensors for the unforced case are shown in figure 15 for a time during the
self-similar period. Since the wake is statistically symmetric, the statistical sample in
these profiles was effectively doubled by averaging the two sides of the wake together.
The distribution of the various tensor components is similar to what was obtained
in the case of homogeneous shear flow (see figure 10). The profile for the normalized
dimensionality tensor dij remains relatively constant across the wake. The streamwise
component d11 is slightly smaller than the cross-stream and spanwise components
(d22 and d33) indicating the existence of structures that are somewhat elongated in the
streamwise direction. As in the case of homogeneous shear, f12 attains a relatively
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Figure 16. DNS results Moser et al. (1998) showing the normalized Reynolds stress, circulicity,
dimensionality, and inhomogeneity tensors in a forced plane wake at τ = 50.0, during the approximate
self-similar period: , 11 component; , 22 component; −−-−−, 33 component; - - - -, 12
component. The structure is characterized by coherent concentrations of large-scale spanwise
circulation as reflected in the profiles of d33 and f33. Two-dimensional forcing produces effectively
2D–2C turbulence, for which the inhomogeneity cij vanishes, rendering homogeneous relations
among the one-point tensors valid.

constant positive value across the wake. The non-zero value of f12 suggests that the
structures are inclined to the streamwise direction.

In figure 15(d) the components of the symmetrized inhomogeneity tensor are shown
normalized with Dkk to obtain a measure of the relative significance of inhomogeneity
in this flow. The profiles of cij + cji suggest that the effects of inhomogeneity are
moderate across most of the wake except in the potential far field where c22 and
c33 grow significantly, but where all terms of the non-normalized Cij (and the other
tensors) are small.

The profiles of the components of the normalized tensors in the case of the forced
wake are shown in figure 16, also during the (approximate) self-similar period. The
striking difference between these profiles and those for the unforced wake (see figure
15) is a manifestation of the differences in the structure of the turbulence in these
two flows. Moser et al. (1998) point out that the unforced wake is best described



One-point turbulence structure tensors 241

(a) (b)

0

0.04

0.06

0.040.02

0.15

0.20

0

–IIr or –IIf

0.05 0.20

0.02
IIf

IIr

–IId

0.06

–IIr or –IIf

0.10

0.05

0.10 0.15

IIfIIr
II d 

= II r 
or  I

I d 
=  I

I f

II d 
= II r 

or  I
I d 

=  I
I f

Figure 17. DNS results (Moser et al. 1998) showing a comparison of the anisotropy of d with those
of r and f in (a) an unforced plane wake and (b) forced plane wake. In all cases � corresponds to
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as ‘a slab of turbulence with undulating boundaries’. In contrast, in the forced wake
one can observe coherent ‘concentrations of large-scale spanwise circulation’. These
differences are nicely reflected in the profiles of d33 and f33 for the two cases. Note
that the two-dimensional forcing has suppressed d33 and augmented f33, as one would
expect in a flow with the principal energy-containing structure consisting of vortical
structures aligned with the spanwise (x3) axis.

The most striking effect of the forcing is the emergence of relationships among the
components of the four tensors that are valid across the entire wake, and which can
be summarized as follows:

d11 t r22, d22 t r11, d33 t r33 � d11, d22, d12 t −r12,

f33 � f11, f22, f12 t 0 and cij + cji t 0 for i, j = 1, 2, 3.

}
(8.1)

Note that these results are just an approximate form of the exact results discussed in
§ 4.3 for 2D–2C turbulent flow. Hence, the forcing of the two-dimensional modes has
produced a turbulent flow where the dominant energy-containing motion is very close
to being 2D–2C; as a result, the effects of inhomogeneity are much less dominant
in this case than in the unforced wake. Note that ckk ≈ 0, and hence Fkk ≈ q2 (see
(4.3) and (4.4)), which is consistent with both the fluctuating velocity and the large-
scale circulation fields being generated primarily by the same large spanwise vortical
structures.

It should be emphasized that the suppression of cij + cji is due to the strong 2D–2C
character of this flow and does not necessarily imply vanishing of all spatial gradients
of statistical moments. The suppression of the inhomogeneity tensor means that all
the relationships that exist between the remaining structure tensors in homogeneous
turbulence (for example (4.9) and (4.10)) are also valid locally in this case. This
suggests that it should be relatively easy to extend good models for homogeneous
turbulence to handle cases like this. In essence, forcing of two-dimensional modes
results in a reduction in the number of independent tensor components that are
required for the description of the turbulence in this flow.

Figures 17(a) and 17(b) show a comparison of −IId to −IIr and −IIf for the
unforced and forced wakes. In the unforced wake, the anisotropies of r and f are very
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close to each other and considerably higher than that of d , except near the centreline
of the wake, where all anisotropies are small. Note, however, that two-dimensional
forcing makes the anisotropies of both r and f roughly uniform across the entire
wake, and IIr approximately equals IId, as expected for nearly 2D–2C turbulence.

9. Self-similar turbulent mixing layer
We also studied the structure tensors in self-similar turbulent mixing layers. For

this purpose we used the direct numerical simulations by Rogers & Moser (1994) of
two cases (forced and unforced) of a temporally evolving plane mixing layer. The
conclusions reached are similar to those stated for the case of the self-similar plane
wake. In the unforced plane mixing layer the profiles for all four tensors (rij , dij , fij
and cij) are relatively uniform and the inhomogeneity effects are quite small except
near the edges of the layer (ξ & 2.5). In this inhomogeneous region, the turbulence
structure in the strongly inhomogeneous region is dominated by large-scale circulation
(not vorticity) about the spanwise direction. Forcing of the two-dimensional modes
has the same effect on the mixing layer as in the plane wake, that is it produces a
flow that is very close to being 2D–2C and that is dominated by vortical structures
inducing a large-scale circulation about the spanwise direction x3. As in the plane
wake, strong forcing effectively reduces the number of independent components
required to describe the turbulence.

10. Conclusion
We have introduced a systematic framework for studying the effects of turbulence

structure on the evolution of one-point statistics using four one-point statistical
measures of structure: the dimensionality D , circulicity F , inhomogeneity C and
stropholysis Q∗. These one-point structure tensors provide useful information about
different aspects of the energy-containing turbulence structure and are useful as
diagnostic tools and in turbulence modelling.

These ideas were explored using a number of numerical simulations of both
homogeneous and inhomogeneous turbulence undergoing diverse modes of mean
deformation. Several general trends were observed (with some variation) across all
the simulations examined.

Rapid irrotational mean deformation of initially isotropic homogeneous turbulence
produces identical componentality and dimensionality anisotropies (r̃ = d̃). The large-
scale circulation is concentrated around the axes of positive mean strain rate. This
is consistent with the idea that the primary mode of deformation in rapidly strained
flows is one of vortex stretching along the principal directions of positive mean strain
rate.

As the rate of the irrotational mean deformation decreases, the dimensionality
tends to remain closer to isotropy. However, circulicity anisotropy is relatively in-
sensitive to the rate of mean deformation. Since the sum of the componentality,
dimensionality, and circulicity anisotropies must vanish in homogeneous turbulence,
one can encounter flows in which slower deformation produces larger Reynolds
stress anisotropy than. This is confirmed by the DNS of LR and the experiments
of Choi (1983), which show that slower mean strain rates can produce Reynolds
stress anisotropies that exceed the level of anisotropy reached under RDT. The results
reported by LR and Choi also provide evidence that the same stress anisotropy com-
ponents which under slow straining grow beyond their corresponding RDT limit also
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initially diverge further from isotropy upon removal of the strain. Carefully designed
numerical simulations (or experiments) are needed to conclusively clarify these subtle
features of axisymmetric expansion (and plane strain) flows.

The tendency of the anisotropy of the dimensionality to remain small under weak
strain and to become significant under strong strain has important implications for
turbulence modelling. It explains why turbulence models based solely on r (ignoring
d) work well for weakly distorted turbulence, but fail for strongly distorted turbulence.
A model based on the standard return-to-isotropy assumption is insensitive to the
role of structure in the return-to-isotropy problem and simply cannot be calibrated
consistently for all irrotational flows.

Stropholysis plays an important role in flows with strong mean rotation by providing
a separate intercomponent transfer mechanism within the rapid pressure–strain-rate
term. We believe that good models for turbulence subjected to mean or frame rotation
must include stropholysis information in some (perhaps simplified) form.

The inhomogeneity tensor c appears to be an effective diagnostic tool for local
homogeneity in inhomogeneous turbulence. The local homogeneity in the log-region
of fully developed channel flow (Rogers & Moin 1987), the weak inhomogeneity of
free shear flows, as well as the strong inhomogeneity in the near-wall region are
reflected in the profiles of c.

The inhomogeneity tensor c vanishes in 2D–2C turbulence. The implication of this
is that these flows can be treated as locally homogeneous, in the sense that all the
constitutive relations among various one-point statistics that exist in homogeneous
turbulence are also valid in 2D–2C turbulence.

We hope that these ideas will stimulate some innovative schemes for incorporating
structure information in one-point turbulence closures. We will report our progress
in this direction in due course.

The authors wish to thank Peter Bradshaw for scrutinizing the manuscript as well
as the referees for suggesting a number of valuable improvements. This work has
been supported by the Air Force Office of Scientific Research (Drs James McMichael,
Mark Glauser and Thomas Beutner) and by the Center for Turbulence Research.

Appendix A. An exact decomposition of the rapid pressure–strain-rate term
The inviscid RDT evolution equations for the Reynolds stresses in homogeneous

turbulence are given by (2.1). Closure of these equations requires modelling of the
fourth-rank tensor M appearing in the rapid pressure–strain-rate term T

rapid
ij (see (2.2)

and (2.3)), which results from the familiar splitting of the pressure fluctuations

1

ρ
p′,mm = −2Gmnu

′
n,m︸ ︷︷ ︸

rapid

−u′m,nu′n,m + u′m,nu′n,m︸ ︷︷ ︸
slow

. (A 1)

Group theory allows the decomposition of a general fourth-rank tensor into five
subtensors satisfying specified symmetries and antisymmetries. This decomposition is
analogous to the splitting of a second-rank tensor into its symmetric and antisym-
metric parts. KR94 carried out the exact decomposition of M to isolate contributions
from individual structure tensors. Based on this decomposition of M , one can write
the rapid pressure–strain-rate term (2.2) as

T
rapid
ij = TS

ij + TΩ
ij (A 2)
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with

TS
ij = 4SknM

∗
ijnk + 2

3
q2[Sij − Skk(δij − fij) + δijSknfnk − (Sikfkj + Sjkfki)] (A 3)

and

TΩ
ij = Tw

ij + T
Q
ij , T w

ij = 2
3
q2[Ωim(rmj − dmj) + Ωjm(rmi − dmi)], T

Q
ij = −2ΩzQ

∗
kij .

(A 4)

Here Sij = (Gij + Gji)/2 and Ωij = (Gij − Gji)/2 are the mean strain and rotation
rate tensors, and M∗

ijnk is a fully symmetric tensor that can be constructed from M
according to

M∗
ijnk = 1

6
(Mijnk +Minkj +Mikjn +Mjkni +Mjnki +Mnkij). (A 5)

Equations (A 3) and (A 4) highlight the role played by the dimensionality d and
the stropholysis Q∗ in the rapid pressure–strain-rate term. In § 6, the simulations of
Rogers & Moin (1987) are used to explain the role of Q∗ in homogeneous shear flows.

Appendix B. Transport equations for the turbulence structure tensors
(homogeneous turbulence)

The transport equations for the dimensionality D , circulicity F , and stropholysis
Q∗ can be obtained starting from the fluctuating momentum equation. Because the
basic definitions for the structure tensors involve correlations between gradients of
the stream function, the necessary manipulations that lead to the desired transport
equations are most conveniently done in a frame of reference deforming with the
mean motion, in which all the dependent turbulence statistics are homogeneous.
Details of the derivation procedure can be found in KR94 and will not be repeated
here. The resulting evolution equations for the dimensionality and circulicity tensors
in homogeneous turbulence are

D̄Dij

D̄t
= −DikGkj − DjkGki + 2SmnLimnj − 2SmnMmnij

−T slow
ij − (Ψ ′i,mΨ ′n,ju′m,n +Ψ ′j,mΨ ′n,iu′m,n)− 2ν u′m,iu′m,j , (B 1)

D̄Fij

D̄t
= FikGkj + FjkGki + 2DikΩkj + 2DjkΩki − 2SkkFij

+2SnmDnmδij − 2SnmLinmj − 2SnmMijnm − TΩ
ij

+(Ψ ′i,mΨ ′n,ju′m,n +Ψ ′j,mΨ ′n,iu′m,n)− 2ν ω′iω′j . (B 2)

Here TΩ
ij is the rotational part of the rapid pressure–strain-rate term (see (A 4)) and

T slow
ij is the slow pressure–strain-rate term,

T slow
ij =

2

ρ
pss′ij , ps = −2u′m,nu

′
n,m, s′ij = 1

2
(u′i,j + u′j,i). (B 3)

The fourth-rank tensor L is defined by

Lijpq =

∫
kikjkpkq

k4
Enn(k) d3k. (B 4)

The triple correlations in (B 1) and (B 2) are trace-free and represent nonlinear
intercomponent energy transfer between the Dij and Fij .
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The evolution equations of the normalized tensors dij and fij , and for the corre-

sponding anisotropies d̃ij and f̃ij follow easily from the definitions (3.3) and (3.4) and
(B 1) and (B 2). Using the evolution equation for the dij and that for the normalized
Reynolds stress tensor rij , one can write down the equation for the tensorial difference

∆̃ij = r̃ij − d̃ij . For the case of irrotational mean deformation, this equation is

D̄

D̄t
∆̃ij = −(Sik∆̃kj + Sjk∆̃ki) + 2Snmrnm∆̃ij

+2[Snm(Mimnj +Mjmni +Mmnij − Lmnij)
+Ts

ij − 1
2
(Ψ ′i,mΨ ′n,ju′m,n +Ψ ′j,mΨ ′n,iu′m,n)− 2ν(u′i,ku′j,k − u′k,iu′k,j)]/q2. (B 5)

When the mean strain rate is rapid (inviscid RDT), (B 5) reduces to

D̄

D̄t
∆̃ij = −(Sik∆̃kj + Sjk∆̃ki) + 2Snm[rnm∆̃ij + (Mimnj +Mjmni +Mmnij − Lmnij)/q2]. (B 6)

In addition, one can show that when the velocity spectrum tensor satisfies reflectional
symmetry, for example during rapid irrotational deformation of initially isotropic
turbulence,

Mimnj +Mjmni +Mmnij − Lmnij = 0, (B 7)

and ∆̃ij remains zero when initially so. When the mean strain rate is slow both
the nonlinear and viscous terms are in general significant, but special cases exist
where the nonlinear effects are relatively weak. For example, in the slowly strained
irrotational cases from the simulations of LR the slow pressure–strain term is found
to be insignificant relative to the viscous and rapid terms. While information was
not reported by LR for the triple correlations in (B 5) there is strong evidence of the
insignificance of these terms as well. For example, the insensitivity of the circulicity
evolution histories to strain rate, which is particularly strong in the axisymmetric
expansion and plane strain cases, suggests that the intercomponent energy transfer
between d̃ and f̃ is negligible and of the same level as the slow pressure–strain-rate
term. Otherwise, one would expect a stronger dependence of the f̃ histories on the
rate of straining in these flows, because the evolution of d̃ is strongly dependent on
the rate of strain. The rapid terms in (B 5) involve the fourth-rank tensors M and
L, but for a simplified analysis these may be modelled with a linear representation
in d̃ and r̃ (see Appendix C). KR94 have shown that when these two linear models
are used together, the resulting representation of the rapid terms is exact for weakly
anisotropic turbulence. In fact for the irrotational flows considered here, this linearized
representation of the rapid effects is quite accurate for C . 3. With these simplifying
assumptions, we obtain

d∆̃ij
dt

= − 5
7
(Sik∆̃kj + Sjk∆̃ki) + 10

21
Snm∆̃nmδij + 2Snmr̃nm∆̃ij + 2εkkS

∗∆̃ij

+2ν(u′i,ku′j,k − u′k,iu′k,j)]/q2. (B 8)

The evolution equation for the third-rank tensor Qijk in inviscid RDT is

D̄

D̄t
Qijk = −GmkQijm − GjmQimk − εitsGsmMjmtk − εitsGmtMjsmk

+ΩzHizjk + 2Szm(Qijkzm + Qizmjk), (B 9)
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where Ωi = εinmΩmn is the mean vorticity vector,

Hijpq = Ψ ′i,pΨ ′j,q =

∫
kpkq

k2
Fij(k)d3k, Hijpp = Fij , Hiipq = Dpq, (B 10)

and

Qijrpq = εits

∫
ktkrkpkq

k4
Esj(k) d3k, Qijrpp = Qijr. (B 11)

Details on the definitions (B 10) and (B 11) and the properties of these higher-rank
tensors are given in KR94. The stropholysis Q∗ can be obtained from Q using (3.8).
Alternatively, the RDT transport equation for Q∗ can be obtained by a complete
symmetrization of (B 9). For the special case of homogeneous turbulence undergoing
rapid mean rotation (with no strain), the stropholysis equation is

D̄

D̄t
Q∗ijk = 1

18
[Ωi(Rkj − Fkj) + Ωj(Rki − Fki) + Ωk(Rij − Fij)]

+ 1
18

[δkjΩr(Fir − Rir) + δkiΩr(Fjr − Rjr) + δijΩr(Fkr − Rkr)]
+Ωz(M

∗
ijkz −H∗ijkz) + 1

6
Ωz(2εpkz Q

∗
pij + εpjz Q

∗
pki − εpki Q∗pjz). (B 12)

Here, M∗ is the fourth-rank, fully symmetric, sub-tensor of M defined in (2.3). A
relation analogous to (2.3) relates H and its fully symmetric sub-tensor H∗. Even in
the simple case of rapid mean rotation, the stropholysis equation involves a closure
problem, because of the presence of the M∗ and H∗ terms (see KR94 for a detailed
discussion).

Appendix C. Linear structure-based models for weakly anisotropic
turbulence

Two simple models that make use of the new tensors are given here because
they provide additional insight, but one must keep in mind that more sophisticated
structure-based models have been constructed (see KR94 and Reynolds & Kassinos
1995).

A model for the fourth-rank tensor M (see (2.3)) occurring in the rapid pressure–
strain-rate term in terms of r̃ alone is fundamentally wrong in non-equilibrium
turbulence. For weakly anisotropic turbulence, one can easily construct a model for
M that is linear in the anisotropy tensors r̃ and d̃ . We first write the most general
fourth-rank linear tensor function of two second-rank tensors,

Mijpq/q
2 = C1δijδpq + C2(δipδjq + δiqδjp)

+C3δij r̃pq + C4δpqr̃ij + C5(δipr̃jq + δiqr̃jp + δjpr̃iq + δjqr̃ip)

+C6δij d̃pq + C7δpqd̃ij + C8(δipd̃jq + δiqd̃jp + δjpd̃iq + δjqd̃ip). (C 1)

For homogeneous turbulence, continuity and the definitions fix all of the coefficients
in the linear model, and one finds

Mijpq/q
2 = 2

15
δijδpq − 1

30
(δipδjq + δiqδjp)

+ 4
21
δij r̃pq + 11

21
δpqr̃ij − 1

7
(δipr̃jq + δiqr̃jp + δjpr̃iq + δjqr̃ip)

+ 11
21
δij d̃pq + 4

21
δpqd̃ij − 1

7
(δipd̃jq + δiqd̃jp + δjpd̃iq + δjqd̃ip). (C 2)
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Similar analysis leads to a model for the fourth-rank tensor L (see (B 4)), that is linear
in the anisotropy d̃ , and with all its numerical coefficients determined by analysis:

Lijpq/q
2 = 1

15
(δijδpq + δipδjq + δiqδjp)

+ 1
7
(δij d̃pq + δipd̃jq + δjpd̃iq + δiqd̃jp + δjqd̃ip + δpqd̃ij). (C 3)

It is interesting to note that if d̃ = 0 then the model above reduces to the linear
M(r̃) model with a coefficient C5 = −1/7 = −0.143 in (C 1), almost exactly the value
found by Launder et al. (1975) by fitting experimental data!† A possible explanation is
that the anisotropy of the dimensionality in the fitting experiments was much smaller
than the anisotropy of the componentality. The results from various direct numerical
simulations discussed in earlier sections support this conjecture. This analysis then
offers a theoretical basis of the LRR coefficient!

A detailed discussion on the performance of the linear model (C 2) and (C 3) is
given in KR94 and Reynolds & Kassinos (1995). For irrotational deformations the
model is quite accurate for total strains C . 3, but eventually becomes unrealizable as
the basic assumption of weak anisotropy is violated. For rotational flows, stropholysis
information must also be included, and KR94 show that the simplest such model
is the same as the one given in (C 2) and (C 3), but with the addition of linear
stropholysis terms in the representation for M ,

Mijpq/q
2 = · · · − 1

4
(εipkQ

∗
kqj + εjpkQ

∗
kqi + εiqkQ

∗
kpj + εjqkQ

∗
kpi)/q

2. (C 4)

Again all coefficients in the linear model (C 4) are determined by analysis.
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